The Mental Tricks of Athletic Endurance
New research suggests that even weekend athletes can dramatically extend their physical and psychological limits By Alex Hutchinson Originally from the Wall Street Journal Feb. 2, 2018 10:04 a.m. ET For the Slovenian cross-country skier Petra Majdič, the unlikely key to Olympic glory was misdiagnosis. While warming up for her first race at the 2010 Winter Games in Vancouver, Ms. Majdič skidded off an icy corner and fell more than 10 feet into a rocky creek bed. She dragged herself to an on-site medical tent for an ultrasound. “I don’t know,” the doctor said, “but it looks like everything is OK.” Sure, she was in excruciating pain that made her shriek every time she exhaled. But the pain, she believed, was just in her head. As long as nothing was broken, her decision was clear. “Can I go?” she asked. The doctor said yes. Later that evening, after gritting her teeth through a qualifying race, a quarterfinal, a semifinal and a final where she fought to an improbable bronze medal in the classic sprint, she finally went to the hospital—where she was diagnosed, correctly this time, with four broken ribs. The stabbing pain she’d felt during the semifinal? That was one of the broken ribs puncturing her lung, which then collapsed. She missed the rest of the Games and was in the hospital for nearly a week. Such tales are a staple of Olympic lore, a stirring reminder of the heights to which athletes can rise with a medal on the line. In the coming weeks, as the world’s fleetest and toughest converge on South Korea for this year’s Winter Games, we will undoubtedly see more extraordinary feats of endurance. But how, exactly, do the athletes do it? Is it just a matter of physical prowess and training, or is there something else going on in these superhuman exertions? Answers are starting to emerge from a remarkable new body of research on human performance, and the findings have lessons not just for Olympians but for everyone else, too. All of us, it turns out, are capable of pushing back the physical and psychological limits that we encounter at the gym, on the trails and in our sporting adventures. The feeling that you can go no further is just that—a feeling. And feelings can be changed. Early studies of endurance focused, naturally, on the body. Physiologists pieced together an impressively detailed picture of the factors that—in theory—dictate our ultimate capacity. “Our bodies are machines whose energy expenditures may be closely measured,” wrote the pioneering (and Nobel Prize-winning) sports scientist A.V. Hill in 1926. As the mysteries of muscle contraction and metabolism were decoded, endurance began to seem like a question of plumbing—whose heart could deliver the most oxygen-rich blood through the widest vessels to the biggest muscles. There was one big problem with this approach: It couldn’t predict who would win an athletic contest. No matter how accurately you measure physiological parameters like oxygen delivery, you’d be a fool to use that data to bet on the outcome of, say, a marathon. Clearly, something was missing from the “human machine” picture of athletic limits. Hill and other early researchers soon realized that psychology must play a key role. In 1961, a pair of scientists at George Williams College in Chicago showed that they could boost the maximum strength of weightlifting volunteers by 7.4% if an experimenter sneaked up behind the subject and fired a .22-caliber starter’s pistol just before the lift. It was among the first (and most bizarre) attempts to demonstrate that the limits we perceive as physical and absolute are often negotiable and mediated by the brain. The precise nature of the mind-muscle connection remains hotly disputed today, but most researchers accept the essential point: that the physical manifestations of fatigue—racing heart, elevated core temperature, a rising tide of metabolites like lactate in the blood—merely serve as sources of information for the brain, rather than direct limits on our ability to continue. Starting in the late 1990s, the South African author and fitness researcher Tim Noakes advanced the view that our brains are wired for self-preservation. If you push hard enough to endanger your health—by overheating your core or compromising your brain’s oxygen supply, say—your brain will function as a protective “central governor,” automatically weakening the nerve signals driving your muscles. The feedback loop gives rise to the sensation of fatigue and signals you to slow down. An alternate view proposed a decade later by Samuele Marcora, an exercise scientist at the University of Kent’s Endurance Research Group, posits that our limits are defined by the balance between motivation and perceived effort. We don’t stop because our fatigued muscles are incapable of continuing, in this view, but because the effort required to continue is greater than we’re willing to exert. Whatever the mechanism, both camps agree that the subjective perception of effort is a sort of master controller—which means, in practical terms, that if you change your perception of a task’s difficulty, you can change your actual results. There are plenty of examples of this phenomenon. In a 2014 experiment described in the journal Frontiers in Human Neuroscience, researchers led by Dr. Marcora showed cyclists images of smiling faces on a screen in imperceptible 16-millisecond flashes. The exposure boosted cycling performance by 12% over the level recorded with frowning faces projected in the same way. The sight of a smile didn’t lower the subjects’ heart rates or lactate levels, according to Dr. Marcora. Instead, it subtly altered how their brains interpreted those signals, evoking feelings of ease that bled into their perception of how hard they were pedaling. Eliud Kipchoge, the Olympic marathon champion from Kenya, has sought to self-administer the same effect. Mr. Kipchoge has come the closest to breaking the 2-hour barrier in a marathon, missing by just 26 seconds (in a race in Italy last year that doesn’t count in official records). He deliberately smiled broadly every mile or so during the final stretch. “When